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Introductory Remarks

We turned in the material for publication of our book Introduction to the Physics of High Energy
Accelerators, or POHEA for short, fifteen years ago in the Summer of 1992. The original plan was
to write up the solutions to the problems back then, but one of us had already gone to work at
DESY and the other would soon depart to BNL. However the intent stayed in the queue, and this
year we decided to act on it. There have been occasional requests but we also wondered if we could
still do the problems.

The end-of-chapter problems were based primarily on our experience at Cornell and Fermilab in the
design, construction, commissioning and operation of the synchrotrons at those two institutions.
That is why the emphasis in the book is on single particle dynamics as applied to synchrotrons.
It also accounts for the lack of emphasis on the acceleration process itself, although we did realize
that a book about accelerators should at least mention RF systems before going on to transverse
stability.

It’s an embarrassment to see errors (beyond the usual mention of typos) in the problem statements.
Some of these we might try to attribute to “time pressure” or the like, but how can there be a
possible excuse for the association of the matrix designated as M0 in Problem 19 of Chapter 3 with
the intent of the exercise. That is the most egregious stupidity that we have detected but there are
others, as we comment in succeeding sections for the chapters.

There are two main things missing from the book when we look at it in today’s context. One is
the impact of superconducting RF systems and the anticipation that an electron-positron collider
based on that technology will be the HEP follow-on to the LHC. The other is the dramatic increase
in the application of synchrotron radiation to research in biology, chemistry, and physics and the
accelerator developments associated with those directions.
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1 Solutions: Chapter 1

Problem 1 The mass (in energy units) of a proton is 0.938 GeV = 1.5×10−10 joules, so for this
1 joule particle γ ≈ 6.7× 109. Then using Eq. 1.3

1
γ2

=
c2 − v2

c2
=

(c+ v)(c− v)
c2

≈ 2
c− v
c

,

c− v = 3.4× 10−12 m/sec

Problem 2 Transform x′ = u′t′ according to Eqs. 1.15 and 1.18, set x = ut, and solve for u. The
result is

u =
u′ + v

1 + u′v/c2

Problem 3 The time interval dt′ experienced by the passenger is related to the laboratory time
interval dt by dt′ = dt/γ = ds/(vγ), where s is the position along the path of total length L = 2
miles. After expressing v and γ in terms of s, the total time T ′ is

T ′ =
∫ L

0

ds

c
[
2(γF − 1) sL + (γF − 1)2 s2

L2

]1/2

where γF = 50 × 103/0.51 = 0.98 × 105. This integral involves hypergeometric functions, so it’s
easier to do it numerically. The result is T ′ = 0.71 nanoseconds. If one uses the approximation
v = c over the entire path, then the integral is elementary and yields T ′ = 0.67 nanoseconds.

Problem 4 Using Eq. 1.1 on page 4,

dW = ~F · d~s = (d~p/dt) · d~s = ~v · d~p = mv2dγ +mγdv2/2 = mc2dγ.

Problem 5 Starting from ~p = γm~v following Eq. 1.1, proceed as follows:

p2c2 = m2c4γ2 v
2

c2
= m2c4γ2

(
1− 1

γ2

)
= E2 −m2c4

which upon rearrangement yields the result.

Problem 6 Using the result of the preceding problem

dE

E
=

c2pdp

γ2m2c4
=

p2

γ2m2c2

dp

p
=
v2

c2

dp

p
.
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Problem 7 For part (a), use Eq. 1.11 with a current λ′u′ integrated around a circle of radius r′

to give the result for B′⊥ as stated. The statement of part (b) is unintentionally misleading; the
word “dividing” should not have been used; both multiplicaton and division are involved. Also,
it would have been helpful if we had included back in Problem 2 another relationship about the
addition of velocities, namely for a speed u′ then back in the lab we have

γ(u) = γ(u′)γ(v)
(

1 +
u′v

c2

)
.

The current in the laboratory system is

−γ(v)λ′v + γ(u′)γ(v)(u′ + v)
λ′

γ(u′)

where use has been made of the preceding expression for γ(u). Integration as in part (a) gives the
relation between B⊥ and B′⊥. The net charge per unit length in the lab frame is

−γ(v)λ′ + γ(u′)γ(v)(1 + u′v/c2)
λ′

γ(u′)

and now apply Eq. 1.8 to a cylinder of unit length and radius r = r′ to obtain the radial electric
field. Recall that c2 = µ0ε0.

Problem 8 Equating the forces, evB = mg, from which

v =
mg

eB
≈ 1 mm/sec

and since this is far from a relativistic speed, the kinetic energy is

T =
1
2
mv2 ≈ 10−33 J

Problem 9 A static electric field is related to the electrostatic potential V according to ~E =
−~∇V . So averaging over the surface of a sphere of radius R we have from Eq. 1.8

1
4πR2

∫
~E · d~S =

1
4π

d

dR

∫
V dΩ = 0

where dΩ represents the solid angle of the integral over the surface of the sphere. Extension of this
expression down to the limit of zero radius given that V is supposed to be a continuous function
yields V (0) at R = 0.

Problem 10 This exercise outlines the so-called Relaxation Method for numerical solution of a
set of boundary value problems. Very time-consuming before the advent of computers.

Problem 11 Use the static version of Eq. 1.12. In the infinite permeability approximation,
~H vanishes within the iron, so the only contribution to the line integral comes from the gap of
dimension h.
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Problem 12 Integration of ∂2Φm/∂x∂y = B′ takes care of part (a). At constant x, use Eq. 1.12
to integrate By from one pole to the other, then close the line integral by looping through the steel
around two of the coils. The hyperbolic pole faces are of the form xy = R2/2. Then∮

Bydy = B′x

∫ R2/2x

−R2/2x
dy = B′R2 = µ02NI

and solving for B′ gives the result.

Problem 13 Since the divergence of a gradient is ∇2 and the divergence of B is zero, Φm satisfies
Laplace’s equation. The forms shown in parts (a) and (b) follow.

Problem 14 Referring to the figure, imagine a triangle with two of its apexes at the centers of the
conductors and calculate the field at a third apex within the overlap region. Suppose the current
density in the conductor at the left is coming toward you. Then if the distance from its center to
the third apex is r1, the magnitude of the magnetic field is B1 = µ0Jr1/2 after application of Eq.
1.11. Similarly, the magnitude of the field due to the conductor at the right is B2 = µ0Jr2/2. If
we call the included angles at the left and right vertices of the triangle φ1 and φ2, then the vertical
component of the field is B1 cosφ1 + B2 cosφ2. But putting in the values of B1 and B2, the term
r1 cosφ1 +r2 cosφ2 is just the distance d between the conductor centers. So the vertical component
of the magnetic field is a constant, µ0Jd/2, within the overlap region. The horizontal component
is zero because r1 sinφ1 = −r2 sinφ2.

Problems 15 and 16 These two problems go a bit beyond the basic emphasis of this chapter.
For the introduction of the overlap integral and many ways in which luminosity can be expressed,
see the article by Furman and Zisman in Section 4.1 of the Chao-Tigner Handbook.

Problem 17 At a density of 0.07 gm/cm3, and given the proton mass of 1.7 × 10−24 gm, there
are about 4× 1022 targets per cm3. So in the 1 m length of the target, the fraction of the area that
is presented to a passing proton is about 4 × 1025σint. For a proton flux of 1011 per second, the
luminosity would be 4× 1036 cm−2 sec−1.
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2 Solutions: Chapter 2

Problem 1 Eq. 2.1 relates the radius of curvature to the magnetic field. The ratio of momen-
tum/charge is called the magnetic rigidity and has the dimensions of tesla-meters; it’s discussed
in the next chapter. But might as well introduce it here. The product of field and radius is 10/3
times the momentum in GeV/c, so the field is 1 tesla. For a betatron, the flux through the orbit
would be, according to Eq. 2.3, 2π tesla-m2, or a 1 meter yoke radius at saturation. The 300 MeV
betatron at the University of Illinois in the 1950s was a truly impressive device among electron
accelerators of that era.

Problem 2 Use of the definition of surface resistivity in the lines following Eq. 2.17 gives the
result stated. At f = 400 MHz in copper, taking ρ = 1.8 × 10−6 ohm-cm, gives ρs = 5.3 × 10−3

ohms.

Problem 3 Manipulation of Eq. 2.23 results in the form

Rs = A
sin2(αx)
x+ 1

where x ≡ L/R, α ≡ 1.2/(v/c), and the constant A out in front is everything left over that plays
no role in the following. The maximum of Rs as a function of x for α = 1.2 gives L/R ≈ 1.15.

Problem 4 At 400 MHz, a quick numerical estimate shows that Ek is around 20 MV/m; putting
on a factor of 1.7 gets the gradient up to 34 MV/m. If you elect for a cell for which the passage
corresponds to one-half an oscillation, a so-called π-mode cell, then the transit time factor is 2/π,
and so the energy gradient for each cell could be as high as 22 MeV/m. At a cell length of 3/8
m (v ≈ c), some 8 MeV could be achieved in a single cell. As noted in the text, the cell radius is
about 0.3 m, and so all the numbers are in hand to calculate the power dissipation, etc.

Problem 5 In Eq. 2.40, insert φ1 = π − φs. Then d∆E/dn = 0, and φ1 is one the boundaries of
the motion in φ. Then looking at Eq. 2.45, the other boundary is given by the relationship stated
in the problem.

Problem 6 This exercise may be found under Lecture Demonstrations on this site.

Problem 7 At the injection energy of 2 TeV, the proton is highly relativistic, so its speed may
be taken as c. The rate of energy gain is 12× 103 MeV/sec, which at an orbit period of 0.29× 10−3

seconds implies a rate of energy increase of 3.5 MeV per turn. So sin(φs) = 3.5/15 and φs = 167o.
Then using Eq. 2.49 νs ≈ 0.11 at injection. This result of “10 turns per synchrotron oscillation”
at injection is quite typical of high energy synchrotron designs.
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Problem 8 Suppose the situation is above transition so φs = π. Then Eq. 2.45 takes the form

∆E2 +A cosφ = A

where the “constant” on the right hand side of the equation has been evaluated at φ = 0 where
∆E = 0. Then ∫

∆Edt =
1
ωrf

∫ 2π

0
∆Edφ =

1
ωrf

4
√

2A

yields the ∆E > 0 half of the area. Multiplication by 2 gives the result. A similar calculation below
transition has the same outcome. The bucket area associated with the (Tevatron) parameters is
7.1 eV-sec.

Problem 9 The area is supposed to be occupied by particles executing small oscillations above
transition, with a maximum amplitude of φm = 0.5. Moving the center of oscillation to π, Eq. 2.45
becomes

∆E2 = A(cosφ− cosφm) ≈ A

2
(φ2
m − φ2)

and the result follows from integration over ∆Edt in the above approximation. The emittance is
0.35 eV-sec.

Problem 10 According to Eqs. 2.71-2.72, dp/p will damp like 1/E3/4 well above transition and
like 1/E1/4 well below (provided v ≈ c).

Problem 11 A bit more algebra here for special function enthusiasts. Take a look at for instance
RHIC Technical Note No. 7 by Harold Hahn dated August 28, 1984 entitled “The Stationary RF
Bucket”, which can be downloaded from Brookhaven.

Problem 12 This exercise may be found under Lecture Demonstrations on this site.

Problem 13 This is Eq. 2.45 again, with ∆E/E evaluated at φ = π. Using the notation for the
solution to Problem 8 above, ∆E/E =

√
2A/E = 5× 10−3.

Problem 14 One approach would be to use two traveling wave accelerating structures, in recog-
nition that particles going in the opposite direction to such a wave are perturbed very little. Or
if the designers have a preference for standing wave cavities, like the pillboxes described in the
text, two sequences of such cavities with relative phases chosen to reinforce acceleration in the two
directions will perform the same function.
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3 Solutions: Chapter 3

Problem 1 This exercise is supposed to reinforce the discussion of Section 3.1.1, and weak
focussing played an important role in the history. The results can be obtained using Eqs. 3.46-
3.47, although somehow the name of the vertical coordinate differs between that used in Eq. 3.47,
y, and the z of the problem statement.

Problem 2 Unfortunately, the point of this problem was not stated clearly. The intent was to
extend the discussion of page 62 associated with Eq. 3.11 to larger ratios of L/f � 1 to show that
a quadrupole doublet was a useful focusing device in beam optics. To pursue this, see how the
familiar single lens formula of geometrical optics 1/`1 + 1/`2 = 1/f carries over into this case. For
the doublet be useful in replacement of a single (convex) lens, one would be looking at the ` � L
range which could be of interest in beam lines, but not of relevance for accelerator structures.

Problem 3 A past approach to thick lens description replaced the thick lens with a drift1-thin
lens-drift2-thin lens-drift1 sequence, where the locations of the two thin lenses were referred to as
the principal planes. With today’s computer capability, this description and hence this exercise is
of limited interest. See, for example, http://en.wikipedia.org/wiki/Focal plane.

Problem 4 Here, the point is to reproduce Eq. 3.21. Just remember that if the matrix is to
operate on a column vector, the order of factors builds from right to left.

Problem 5 After multiplication of Eqs. 3.50 and 3.51, the stability criterion, Eq. 3.20, requires
| cosh(

√
KL) cos(

√
KL)| ≤ 1.

Problem 6 Computer exercise.

Problem 7 As shown in the progression from Eq. 3.15 through Eq. 3.19, neither eigenvalue is
real but the sum is. Similarly, neither eigenvector is real, but their superposition in description of
physical motion must be.

Problem 8 In one degree-of-freedom, unimodularity of the transfer matrix is the equivalent of
conservation of energy in this description of the motion. For an oscillator, a quadratic form like
ax2 + bx′2 should be conserved. If M is the matrix to convey the motion from point 1 to point 2

(ax2 + bx′2)2 =
(
ax bx′

)
1
MTM

(
ax
bx′

)
1

= (ax2 + bx′2)1

therefore MTM = 1 and since the determinant of the transpose is the same as the determinant
of the matrix, the square of the determinant is one. Matrices with determinants equal to -1 are
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concerned with reflections, therefore in the present case we would expect a unit determinant. In
the x, x′ description the determinant will change with energy; the use of “invariant emittance” is
supposed to help in this regard.

Problem 9 Best that we set aside for the moment why one would choose to write the matrix in
this form; it probably made some sort of sense back when we were writing the book. This is rather
formal material. One can write M = eJµ, and that exhibits the similarity of the J matrix in this
context to

√
−1. With K = Jµ the circumstance that the trace of K is zero follows immediately.

Problem 10 Just multiply the matrices. This is a useful result.

Problem 11 The rather formidable looking Eq. 3.72 becomes tractable if differentiated once
more, and becomes linear. This is an important result; the amplitude function is no more compli-
cated than an offset harmonic oscillator in progress through an accelerator component.

Problem 12 No explanation is necessary here; the results are shown.

Problem 13 This expression is basic to the analysis of orbit perturbation in beam lines or
accelerator structures, presuming that an initial design has been developed in terms of Courant-
Snyder parameters. In Eq. 3.71, evaluate the constants A, δ with the initial conditions x =
0, dx/ds = θ.

Problem 14 Since the phase advance around a ring is the same independent of position,

M2 = I cosµ+ J2 sinµ = M(1, 2)[I cosµ+ J1 sinµ]M(1, 2)−1

and the result follows after cancellation of the cosµ terms. The detailed relationships between
Courant-Snyder parameters follows from straightforward matrix multiplication.

Problem 15 This result follows from manipulation of the first row of Eq. 3.85.

Problem 16 In a drift space, the amplitude function is a parabola; that was one of the results
of Problem 11. If we call φ the phase advance in a distance L then its sine is

sinφ = sin
[∫ L

0

ds

β0 − 2α0s+ γ0s2

]
= sin[arctan(γ0L− α0) + arctanα0]

=
γ0L

[1 + (γ0L− α0)2]1/2[1 + α2
0]1/2
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and this is the quantity that is to be compared with the result obtained directly from the trace of
the matrix. The expressions for the necessary Courant-Snyder parameters in terms of lens spacing
and focal length may be obtained by comparing the form of the J matrix with Eq. 3.21, with the
results

α0 =

[
1 + L

2f

1− L
2f

]1/2

, γ0 =
1

f

[
1−

(
L
2f

)2
]1/2

These yield sinφ = L/2f , consistent with the value found from the trace.

Problem 17 The amplitude function at the collision point is conventionally denoted by β∗, and
since β is a minimum there, α = 0, γ = 1/β∗, and the phase advance moving through the drift
region in either direction is

ψ(s) =
∫ s

0

dz

β∗ + z2

β∗

= arctan(s/β∗).

For s� β∗, ψ ≈ π/2, and so the total phase advance approaches 180◦.

Problem 18 To show that J2 = −I, carry out the multiplication and use Eq. 3.68. The n
repetition part can be proved by induction, or by an appeal to Eq. 3.76.

Problem 19 There is an (embarrassing) error in the statement of the problem. As shown, with
0’s on the main diagonal, the motion is about as safely stable as it can get, since the tune is a
quarter of an integer. The way it should have gone is as follows. If the tune of stable motion
differs from an integer by a small amount ε the matrix at a point where the amplitude function is
a maximum and its derivative will be 0 takes the form(

1− ε2

2
β0

ε ε
ε
β0

1− ε
2

)
ε→0=

(
1 β0

0 1

)
where β0 is the maximum of beta near a quarter integer tune. Then the introduction of a thin
defocusing lens of focal length β0/4 gives(

1 0
1

4β0
0

)(
1 β0

0 1

)
=
(

1 β0
1

4β0

5
4

)
.

Then, using Eq. 3.79, cosµ = 1 + 1/8 which yields sin(µ/2) = i/4; that is, the phase advance
has become imaginary. Of course, because the variables x, dx/ds are real numbers, the amplitude
function also turns imaginary at 1.9iβ0.

Problem 20 From Problem 12, and recalling that in this case γmax = 1/βmin, βmax = 101 m
and γmax = 29 m. Then Eqs. 3.106 and 3.107 give 14 mm and 0.26 milliradians for the estimates.
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Problem 21 Using Eq. 3.95, admittance = 25π mm-mrad.

Problem 22 Suppose there is a large number P of synchrotrons in the ensemble. Starting from
Eq. 3.146, the average of the square of the displacement at some point will be

〈x2〉 =
1
P

∑
`

x2
` =

(
β

1/2
0

2 sinπν

)2∑
i,j

[
1
P

∑
`

θi,`θj,`

]
(βiβj)1/2 cos(πν − ψi)cos(πν − ψj)

=

(
β

1/2
0

2 sinπν

)2∑
i

θ2
rmsβi cos2(πν − ψi)

where ` is the index designating a member of the ensemble, and β0 is the amplitude function
at the location where the total displacement is calculated. The quantity in square brackets for
uncorrelated perturbations reduces to δij , and that has been used to yield the second line. Also in
the second line, note that the square of the cosine appears rather than the sine as in the statement
of the problem. Apparently there was some sort of transcription error. The final result follows from∑

i

βi cos2(πν − ψi) =
∑
i

βi

(
1 + cos[(πν − ψi)/2]

2

)
≈ Nβ

2

The numerical part of this problem was based on the Superconducting Supercollider (SSC) param-
eters. Assuming 5 Tesla magnets, the circumference would be about 85 km or some 500 FODO
cells. The quadrupole focal length is 90/

√
2 = 63 m giving θrms = 0.016 mrad. Using the results of

Problem 12, β = 180 m and β0 ≈ 300 m. Then the estimate of the rms orbit distortion is 3 cm.

Problem 23 Computer exercise.

Problem 24 The requirement that displacement and slope be zero following θ3 leads to the
conditions

x = θ1(β1β3)1/2 sinψ13 + θ2(β2β3)1/2 sinψ23 = 0

x′ = θ1

(
β1

β3

)1/2

[cosψ13 − α3 sinψ13] + θ2

(
β2

β3

)1/2

[cosψ23 − α3 sinψ23] + θ3 = 0

Solving for θ2 and θ3 in terms of θ1 gives the results.

Problem 25 Now is the time to use that matrix erroneously stated in Problem 13! The focal
length of the quadrupole in that very stable situation is about β0/4 where β0 is the maximum value
of the amplitude function. Reversal of the quadrupole makes the perturbation twice as strong, so
the matrix becomes (

1 0
8
β0

1

)(
0 β0

− 1
β0

0

)
=
(

0 β0

− 1
β0

8

)
.

With cosµ = 4, the motion is not stable.
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Problem 26 This exercise is in the same spirit as Problem 22 but there is less algebra because
no trigonometric functions are involved. Start from Eq. 3.151, and let qi stand for the unperturbed
1/F of the ith quadrupole. Again, assume the ensemble contains a number P of nominally identical
synchrotrons, and the index ` identifies a member of that ensemble. Then

〈∆ν2〉 =
(

1
4π

)2∑
i,j

[
1
P

∑
`

(
∆B′

B′

)
i,`

(
∆B′

B′

)
j,`

]
qiqjβiβj

=
(

1
4π

)2(∆B′

B′

)2

rms

Ncell
β2

max + β2
min

F 2
.

For the numerical parameters of this problem, the rms tune spread of the ensemble is about 0.01,
which looks small but is an order of magnitude too large for comfort due to the non-linear effects
of Chapter 4.

Problem 27 Using the results of Problem 14 above, the unperturbed amplitude function down-
stream of the quadrupole can be written as β0(s) = a2β1 − 2abα1 + b2(1 + α2

1)/β1, where a and b,
which are functions of s, are the 1,1 and 1,2 elements of the matrix from the quadrupole to the point
downstream. The introduction of the quadrupole error changes the initial value of α according to
Eq. 3.153, so that the new amplitude function must follow β(s) = a2β1 − 2ab(α1 + qβ1) + b2(1 +
(α1 + qβ1)2)/β1. Subtracting the two expressions above, and using Eq. 3.85 to write a(s) and b(s)
in terms of the unperturbed amplitude functions and phase advance, generates the stated result.

Problem 28 The result is obtained by an analogous procedure to that used in Problems 22 and
26. In the form shown, the angle brackets have no effect other than to confuse the reader. Expressed
in the form where the brackets make sense, the solution becomes(

∆β
β

)
rms

=
1

2
√

2| sin 2πν]
N1/2〈q2β2〉1/2

Problem 29 This problem can be easily done with a sketch, but here’s an approach using two-
by-two matrices. Go through a half-cell, starting at the midpoint of the focusing quadrupole where
the dispersion will be a maximum. Midway through the drift, add the angle due to the dipole, then
finish at the midpoint of the defocusing quadrupole where the dispersion is a minimum.(
Dmin

0

)
=
(

1 0
1/(2F ) 1

)(
1 L/2
0 1

)[(
0
θ

)
+
(

1 L/2
0 1

)(
1 0

−1/(2F ) 1

)(
Dmax

0

)]
This yields two equations for the two unknowns, and with use of sin(µ/2) = L/(2F ) gives the result
stated.

Problem 30 Let D,D′ stand for the dispersion and its slope for the FODO cell alone, and
∆D,∆D′ for the addition needed as a result of the bend-free cell. Closure through the n-cells
requires

Mn

(
∆D
∆D′

)
+M

(
D
D′

)
=
(

D + ∆D
D′ + ∆D′

)
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To obtain the solution as stated, use

(I −Mn)−1 =
I −M−n

2− TraceMn

and Eq. 3.19.

Problem 31 A particle that is initially on and directed along a displaced equilibrium orbit will
stay on it. That is  D2

δp
p

D′2
δp
p

δp
p

 =

 m11 m12 m13

m21 m22 m23

0 0 1


 D1

δp
p

D′1
δp
p

δp
p


and the result follows from rearrangement.

Problem 32 With the abbreviations c ≡ cosµ and s ≡ sinµ, the matching requirement may be
written c βs x(1− c)D

−s/β c xsD/β
0 0 1

 c βs (1− x)(1− c)D
−s/β c (1− x)sD/β

0 0 1

 D
0
1

 =

 0
0
1


In the above equation, the cell matrices have been written from quadrupole center to quadrupole
center where D′ = 0. The result follows by solving for x. In the particular case µ = π/3, matching
could be achieved by leaving the standard dipoles out of the next to the last cell.

Problem 33 Estimate 〈D/ρ〉 using the result of Problem 29. Using the approximation sin(µ/2) ≈
µ/2, 〈

D

ρ

〉
≈ θ2

µ2
≈ 1
ν2

and the result follows from Eq. 3.136. In the above, use has been made of θ = 2π/2N and
Nµ = 2πν, where N is the number of cells.

Problem 34 The lowest order contribution to the path length change is
∫

(xds/ρ). Throughout
most of the circumference, the oscillatory motion will make a very small contribution to the integral;
only in the region of the “kink” caused by θ will the motion stay on one side of the orbit center for
more than a half-wavelength. Starting from Eq. 3.146, the series of approximations goes as follows:

∆C ≈ θ β
1/2
0

2 sin(πν)

∫ 2πν

0

β3/2

ρ
cos(ψ − πν)dψ ≈ θβ

2

ρ
≈ θ L2

ρ sin(µ/2)2
≈ θD

The phrase “at the location” in the statement of the problem is something of an exaggeration; “in
the neighborhood” might be more appropriate.
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Problem 35 Start from Eq. 3.147 and use the result of Problem 12.

ξ = − 1
4π

2L
[

1 + sin(µ/2)
F sinµ

− 1− sin(µ/2)
F sinµ

]
Ncells = −N tan(µ/2)

π
≈ −ν

Problem 36 For a “horizontal” oscillation, Eq. 3.155 gives

δν =
1

4π

∮
2B0b2
B0ρ

βDds = 〈Dβb2〉
δp

p

and a minus sign enters in the “vertical” plane because ∇×B = 0.

Problem 37 Eqs. 3.163-4 follow from application of the result of the preceding problem. For a
20 TeV ring, from Problem 29 D ≈ 4 m and from Problem 22 β ≈ 180 m, so the chromaticity will
have a magnitude of about 2× 103.

Problem 38 The only challenge in this exercise is figuring out where d and L were supposed to
be on the sketch. The offset sideways is (intended to be) d and the dipole spacing along the beam
is L, so the dispersion function at B is d, which in the case of part (b) is 22.5 inches. Vertical
emittance dilution will occur. For δp/p ≈ 10−3 the vertical spread from dispersion would be about
0.6 mm, which is comparable to the rms beam size due to transverse emittance alone.
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4 Chapter 4

Problem 1 If magnetic fields other than those in the basic design are added to Eq. 3.48, the
result is

x′′ +K(x) = − ∆B
(Bρ)

Then transform to the dependent variable ζ ≡ x/β1/2 using φ = ψ/ν as the independent variable
for ζ while maintaining x as the independent variable in β and its derivatives. Eq. 3.72 will be
needed to simplify the result.

Problem 2 In the solution to Problem 11 of Chapter 1, replace h by g and then differentiate
with respect to the transverse coordinate x to calculate B′. Use of dg/dx ≈ h/x gives the result.
This approach continues to assume that ~H = 0 within the iron.

Problem 3 Computer exercise.

Problem 4 Try “backing into” a Hamiltonian by using Eq. 4.49 to integrate Eq. 4.46 with
respect to x: ∫

−dH
dx̃

= −1
4
Ap̃x

2x+
1
4
A

1
3
x3 + πδx̃2 + f(p̃x)

where f(p̃x) is some as yet unknown function of the other variable. Differentiation of this interme-
diate result with respect to f(p̃x) as in Eq. 4.48 results in f(p̃x) = πδp̃x

2. Now there is a function
that qualifies as a Hamiltonian; call it H1:

H1 = πδp̃x
2 + πδx̃2 − 1

4
Ap̃x

2x+
1
4
A

1
3
x3

Though it may not look like the invariant of Eq. 4.47, H1 yields the proper equations of motion.
Eq. 4.47 is a modification contrived to exhibit the fixed points explicitly, and the equations of
motion are just the same as would be obtained with Hamilton’s equations on H1. So Eq. 4.47
is the preferred form of the Hamiltonian in this case, and could be arrived at directly by first
identifying the fixed points from the equations of motion and making a coordinate change.

Problem 5 Identify y with p̃y and recall that
∫

[1/(x2 − a2)] = [1/(2a)][ln(x− a)− ln(x+ a)].

Problem 6 Three turns later, y = 15 mm. This is a rather realistic picture of the amplitude
growth needed to direct particles into an extraction channel.

Problem 7 Computer exercise.

14



Problem 8 Computer exercise.

Problem 9 Computer exercise.

Problem 10 The expansion of the magnetic field as a function of x looks like B(x) = B(0) +
B′x+B′′x2/2 +B′′′x3/6 + ... so the B′′′ term represents the octopole field. If B′′′ has no significant
dependence on s then Eq. 4.33 gives da/dn = 0. But insertion of the octopole field into Eq.
4.35 produces a cos4 χ term which expands to 3/8 + cos 2χ/2 + cos 4χ/8 and the first term in this
expansion results in a non-zero average for the tune shift as a function of amplitude.

Problem 11 To be consistent with the notation in the text, the equations of motion in the
statement of the problem should contain x̃ and p̃x. Use of the simpler notation was probably
motivated by typing fatigue. We continue with the simpler form here. Starting from Eqs. 4.33 and
4.35, the equivalents of Eqs. 4.41 and 4.42 become

da

dn
=

a

2
Q sin 2ψ

dψ

dn
=

1
2
Q cos 2ψ + 2πδ

Next, use Eqs. 4.43 and 4.44 to convert to x and px to give the equations of motion as shown in the
problem statement. Some trigonometric maneuvers are needed, involving tanψ = −px/x and the
sine and cosine functions associated with that triangle. Differentiation of the equation for dx/dn
and use of the equation for dpx/dn gives

d2x

dn2
+
[
(2πδ)2 −Q2/4

]
x = 0

and as long as the bracketed coefficient of x is positive the motion is stable. The half-width of the
stopband follows from |Q/2| = 2πδ.

Problem 12 With the use of the results of the preceding two problems, Eqs. 4.43 and 4.44 give

dx

dn
= px

[
−1

2
Q+ 2πδ +

3
8
D(x2 + p2

x)
]

dpx
dn

= x

[
−1

2
Q− 2πδ − 3

8
D(x2 + p2

x)
]

As an alternative to the approach used in Problem 4, this time look at the fixed points first. Setting
dx/dn = dpx/dn = 0 yields four fixed points:

x = 0, px = ±2
[
Q− 4πδ

3D

]1/2

≡ ±u

px = 0, x = ±2
[
−Q− 4πδ

3D

]1/2

≡ ±v

15



Suppose B′′′ > 0 so that the tune increases with amplitude. Then for stable motion of small
amplitude oscillations we need δ < 0 and |Q| < 4πδ, so for extraction the phase stable region will
shrink as |Q| increases. Noting that u > v, there is reason to suspect that ±u are the centers of
the circles in the statement of the problem, with radius r = (u2 + v2)1/2. Indeed, a Hamiltonian
given by

H =
[
(px − u)2 + x2 − r2

] [
(px + u)2 + x2 − r2

]
produces the correct equations of motion and H = 0 is the product of two circles.
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5 Chapter 5

Problem 1 Starting from Bu = B′v and Bv = B′u, application of the two transformations(
Bx
By

)
=
(

cosφ − sinφ
sinφ cosφ

)(
Bu
Bv

)
,

(
u
v

)
=
(

cosφ sinφ
− sinφ cosφ

)(
x
y

)
gives the result.

Problem 2 An ideal solenoid has a uniform field, Bs, in the beam direction s. Start from the
equation of motion, d~p = e~v × ~B and convert to s as the independent variable, with the result

dx′

ds
= ky′ ,

dy′

ds
= −kx′ , k ≡ Bs

(Bρ)

One quick way to solve this pair of equations is to combine them by defining u′ ≡ x′ + iy′ so one
has du′′ = −iku′ with the solution u′ = u′0exp(−iks). Another integration gives the solution for u
in terms of u0 and u′0. The matrix for the body of the solenoid is

Mbody =


1 s/k 0 −(c− 1)/k
0 c 0 s
0 (c− 1)/k 1 s/k
0 −s 0 c


where c ≡ cos(k`), s ≡ sin(k`), ` being the length of the solenoid. At exit from a (cylindrically
symmetric) solenoid, a particle encounters a radially directed magnetic field. An attractively simple
approximation is that the exit region is sufficiently short so that the displacement of a particle does
not change. Looking downstream, a particle at radius r will receive a clockwise-directed momentum
impulse of magnitude ∆pφ = evs

∫
Brdt = e

∫
Brds. But the longitudinal flux from a circle of radius

r, Bsπr2, is related to Br by 2πr
∫
Brds due to

∫
~B · ~dA. The matrix becomes

Mexit(k) =


1 0 0 0
0 1 −k/2 0
0 0 1 0
k/2 0 0 1


and since at the entrance, Br has the opposite sign, Menter(k) = Mexit(−k).

Problem 3 There is nothing fundamentally wrong with the linear optics of such a synchrotron;
it’s just inconvenient. The dispersion would be coupled into both the horizontal and vertical planes,
and it is a bit difficult to think of an advantage in that. But that may be just a result of our lack
of imagination.

Problem 4 Finding the eigenvectors means exhibiting the solutions for a from Eqs. 5.7 or 5.8.
The result is

a =
1
2k

(
k1 − k2 ±

[
(k2 − k1)2 + 4k2

]1/2)
which follows rather directly from Eq. 5.7. The solution for a from Eq. 5.8 is the same, but some
algebra is needed to demonstrate the equality.
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Problem 5 This is a repetition of the technique for solving coupled linear differential equations
that was used in Problem 2. Combination of Eqs. 5.49 and 5.50 gives as a next-to-last step

du

dn
= −iκ

2
u∗u

(x2 + p2
x)
v − i

√
2πδu

where u∗ is the complex conjugate of u.

Problem 6 Computer exercise.

Problem 7 This is mainly a matter of substituting elements of Eq. 5.67 into Eq. 106, remem-
bering to calculate a symplectic conjugate using Eq. 5.98.

Problem 8 In the statement of the problem, we should have also made clear that the derivatives
of the amplitude functions were the the same in the two degrees of freedom. The intent was that
the matrix between the two skew quadrupoles is the identity matrix. Then the product of the two
skew quadrupole factors is also the identity matrix, and so the matrix describing motion outside
of the skew quadrupole region is not modified by their insertion. The eigenvalues of the one-turn
matrix are independent of the location at which they are calculated. To see that this is the case,
look at the relationship between the one-turn matrices at two points: M2 = M(1, 2)M1M(1, 2)−1.
The eigenvalue equations at the two points are the same, as shown by

det [M2 − λI] = det
[
M(1, 2)M1M(1, 2)−1 − λM(1, 2)M(1, 2)−1

]
= det [M(1, 2)] det [M1 − λI]M(1, 2)−1 = det [M1 − λI]

Problem 9 Think of the matrix for the n degree-of-freedom system as an n×n array of elements
mij each of which is itself a 2 × 2 matrix. The diagonal terms of the Eq. 5.88 product lead to n
results analogous to Eqs. 5.94 and 5.95, except now each is the sum of n determinants. So these
terms give n relationships. The off-diagonal terms occur in transposed pairs as in Eqs. 5.91 and
5.92, giving 2n2 − 2n relationships. The sum of these two sources gives the n(2n− 1) answer.

Problem 10 Follow the treatment of Section 5.2 for the sextupole case, but this time the fields
are By = B′y and Bx = −B′x. Then the counterparts of Eqs. 5.115 and 5.116 are

∆x′ = − B′

(Bρ)
yds, ∆y′ = − B′

(Bρ)
xds

and the development follows just about line by line, except that now the phase differences are used
in the trigonometric expansions because of the neighborhood of the difference resonance. Eq. 5.122
and the equivalent for rate of change of b become

da

dn
=

b

2
[A sin(ψx − ψy) +B cos(ψx − ψy)]

db

dn
= −a

2
[A sin(ψx − ψy) +B cos(ψx − ψy)]
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where the “driving terms” A,B resemble those in Eqs. 5.123 and 5.124, though with phase dif-
ferences rather than sums in the arguments of the sines and cosines. Division of one of these last
equations by the other and integrating yields the result that a2 + b2 is constant. In contrast to
the sextupole sum resonance, motion in this difference is bounded. Because of the phase difference
between the two driving terms, two circuits of compensating skew quadrupoles would be needed for
correction. The exception to this last statement is the case m = 0; for the zero harmonic usually
one circuit is adequate.

Problem 11 This relationship can be obtained by using the result of Problem 22 of Chapter 3;
the argument is essentially the same. A particle displaced in x at Dxδp/p passing through a skew
quadrupole of strength q will experience deflection through an angle θ = qDxδp/p, thus leading
to vertical dispersion. For the numerical example, let’s just use maximum value of the horizontal
dispersion and maxima of both amplitude functions, thereby ignoring half of the quadrupoles and
overestimating the effect of the other half:

Dy

Dmax
≈ βmax

F

1
| sin(πν)|

θrms(N/2)1/2 ≈ 0.2

This estimate, though rough, already says that correction would be needed by skew quadrupole
circuits.

Problem 12 Computer exercise.
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6 Chapter 6

Problem 1 The force starts at zero, reaches a maximum at r/σ = 1.6 and then falls with
increasing r. The derivative begins at its maximum with zero slope and negative curvature, falling
off rapidly to about 20% of its initial value at r = σ.

Problem 2 The contribution of the space charge force to d2u/dψ2 follows from

Fx =
dpx
dt

= γm
d2x

dt2
=
γmv2σ

β2

d2u

dψ2

where use has been made of dψ = ds/β. The remainder of Part (a) consists of using Eq. 6.18,
the expression for εN associated with that equation to express the coefficient of the space charge
force in terms of ∆ν, and the smooth approximation β = R/ν. For Part (b), the left hand side of
equation after substitution of the solution gives

u′′ + u =
[
1− (1 + δ/ν)2)

]
u0 cos[(1 + δ/ν)ψ] ≈ −2

δ

ν
u0 cos[(1 + δ/ν)ψ]

Moving the u0 cos[(1 + δ/ν)ψ] factor to the right hand side, the lowest order solution for δ is

δ(u0) = − ∆ν
(u0/2)2

〈
1− e−(

u2
0
2

) cos2 ψ

cos2 ψ

〉
ψ

= − ∆ν
(u0/2)2

{
1− e−

u2
0
2
[
I0

{
(u0/2)2)

}
+ I1

{
(u0/2)2)

}]}
and, again in the spirit of a lowest order calculation, the contribution of I1 is ignored for small u0

in the result stated in the text.

Problem 3 Computer exercise.

Problem 4 The factor of γ2 in the denominator of Eq. 6.18 comes from the opposite directions
of the electric and magnetic forces. Without this factor, the tune shift would increase by 50% to
0.6.

Problem 5 Computer exercise.

Problem 6 Using the sequence Eq. 1.23, Table 3.1, Eq. 3.119, Eq. 6.21 gives

L = f
N2

4πσ2
= f

N2

4εβ∗
= f

γN2

4εNβ∗
=
cnB
2πR

γ∆νN
r0β∗

= 1.3× 1031 cm−2s−1

where nB is the number of bunches and at 1 TeV the proton speed is taken to be the speed of light
in calculating the bunch collision frequency.
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Problem 7 The transition is shown in the solution of the preceding problem when the N2 de-
pendence changes to N with the insertion of the tune shift parameter.

Problem 8 In this case the electric and magnetic forces are in the same direction, so Eq. 6.3 is
modified to become

F =
(

1 +
v

c

) e2N

2πε0r
≈ 2e2N

2πε0r

Comparison of this expression with Eq. 6.19 leads to the result of Part (b) after setting r = d. The
long-range tune shift differs in sign between the two transverse degrees of freedom. In a drift space,
the amplitude function is a parabola (Problem 11 of Chapter 3), and since the minimum value is
at the crossing point by design, β = β∗ + s2/β∗ ≈ s2/β∗. Setting d = αs and using the expression
for the emittance yields the result of Part (d). Part (e) combines results of earlier sections under
the assumption that it is meaningful to simply add the several tune shifts. The numerical example
gives 2× 10−4 for the long-range tune shift.

Problem 9 In cylindrical coordinates with the center on the center-line of the cylinder, place one
line charge at r = y, θ = 0 and its oppositely charged image at r = R2/y, θ = 0. Then the scalar
potential is

φ(r, θ) ∝ ln
(
r2 +R4/y2 − 2(R2/y) cos θ

r2 + y2 − 2ry cos θ

)
and the boundary condition that the tangential component of the electric field vanish on the surface
of the cylinder is verified by calculating ∂φ/∂θ at r = R.

Problem 10 Use of Eq. 6.23 in the calculation of F ′ for insertion into the first row in Eq. 6.18
gives a tune shift of 0.24 for the parameters stated.

Problems 11, 12 13 This material is discussed in Chapter 2 of Alex Chao’s book Physics
of Collective Beam Instabilities in High Energy Accelerators, which can be downloaded from his
website at http://www.slac.stanford.edu/∼achao/wileybook.html. The treatment of Problem 11
begins halfway down page 47.

Problem 14 For this problem, the elementary definition of a lumped inductive impedance is
enough: Z = iωL, where the inductance, L is the “flux linkage per unit current”.

Z = iωL = iω

∫ d

b
g
µ0

2πr
dr = i

v

R
g
µ0

2π
ln(d/b)

and using c = 1/(µ0ε0)1/2 gives the result.
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Problem 15 The modes of the head-tail instabilities are discussed in Sections 4.3 and 4.5 of Alex
Chao’s book, cited above for Problems 11–13.

Problem 16 In the mid-1980s, while converting the Fermilab HEP program toward colliding
beams, the microwave instability interfered with the debunching process in the Main Ring. Sub-
stantial modification of the interfaces between magnets was necessary to lower the impedance. The
parameters in this problem reflect the situation. The square root of Eq. 6.181 gives an estimate of
72 turns for the growth rate.

Problem 17 These parameters would give a threshold of 2× 107, a few orders of magnitude less
than the actual bunch intensity. But in the 12 msec synchrotron oscillation period there are 104

betatron oscillations. Even if the momentum spread were as low as 10−4, which it isn’t, a small
chromaticity will stabilize the beam against the strong head-tail effect. The head-tail instability as
described in Section 6.4.3, however does require careful chromaticity adjustment.

Problems 18–21 These problems are based on the article by H. G. Hereward in CERN 77-13,
19 July 1977. This is the CERN “Yellow Book” representing the proceedings of the First Course
of the International School of Particle Accelerators. For the Hereward paper and others in this
valuable collection, go to http://library.cern.ch/cern publications/yellow reports about.html and
follow the suggested links.

Problem 22 Another example from CERN 77-13, this time from the article by Albert Hofmann.
The stability diagram for this problem may be found in Figure 8 on page 156, and the process of
its generation is described on the preceding pages.

Problem 23 Combination of Eqs. 6.192, 6.50, and the definition of g0 from Eq. 6.32 gives for
the stability criterion (

δp

p

)2

=
FbNfr0γ

2
t

cγ3

(
1 + 2 ln

b

a

)
where Fb stands for the bunching factor, f for the orbit frequency, and η ≈ 1/γ2

t . The result is that
the fractional momentum spread should be larger than 10−4, and that is easily the case without
the necessity of special measures.
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7 Chapter 7

Problem 1 In Eq. 7.25, insert the 39% emittance definition from Table 3.1 as modified to nor-
malized form according to Eq. 3.119 to give

∆εN =
π

2
γ

∆x2

β
=
π

2
γ × 10−2 mm mrad

Problem 2 This is just a variation of Eq. 7.30 obtained from an earlier set of notes differing only
in the definition of σp. Another oversight in update conversion.

Problem 3 Use J as defined in Eq. 3.75 to verify this relation, as commented in the text on
page 237.

Problem 4 The gradient error represents the insertion of a quadrupole of strength (1/f)∆B′/B′.
Use Eq. 3.153 to calculate ∆α, and from that evaluate det(∆J). The emittance ratio follows from
Eqs. 7.55 and 7.56.

Problem 5 The relation between ∆J evaluated at positions 1 and 2 is ∆J2 = M(1, 2)∆J1. The
product of the determinants is the determinant of the product, and since detM(1, 2) = 1, the
determinant of ∆J is an invariant in this circumstance.

Problem 6 This is another variant of Eq. 7.55 after replacement of the γs using γ ≡ (1 +α2)/β.

Problem 7 The solution amounts to showing that ∆β/β as written in Problem 27 of Chapter 3
satisfies the differential equation, using det(∆J) = −∆α2 = −(qβ1)2.

Problem 8 Keeping only the lowest non-vanishing phase terms in Eq. 2.45 gives the small
amplitude invariant(

∆E
E0

)2

+ (∆φ)2 = constant; E2
0 ≡

EseV

ωrfτ(v/c)2

(
−cosφs

η

)
.

In this case, the analysis used in Eqs. 7.19 – 7.24 can be used. Suppose σE is the incoming rms
energy spread, and σφ is the rms phase spread within a bunch. Then,

(a) for a ∆E energy error upon injection,

(σE/E0)2 = ((σE)0/E0)2 +
1
2

(∆E/E0)2;
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(b) for a ∆φ phase error upon injection,

σ2
φ = (σφ)2

0 +
1
2

∆φ2.

One could then multiply each line by appropriate constants to get the answers in terms of eV-sec,
etc ...

Problem 9 The phase space area is conserved but is stretched out into thin ribbons occupying
a larger effective area.

Problem 10 The expressions of Table 7.1 relate the variances of the particle distribution before
and after dilution takes place. With “emittance” first described as a phase space area, the point of
the problem was to compare the final phase space area which contains 39% of the particles with the
initial phase space area that contained 39% of the particles. Unfortunately, perhaps, a numerical
integration is involved...

Start with Eq. 7.16, and integrate out to a radius a which is presumed to contain a fraction f
(=39%) of the particles:∫ ∫

n0(x, px)dxdpx =
1

2πσ2
0

∫ ∫
e−[(x−∆x)2+P 2

x ]/2σ2
0dxdpx

=
e−∆x2/2σ2

0

2πσ2
0

∫ 2π

0

∫ a

0
e−r

2/2σ2
0e(∆x r/σ2

0) cos θrdrdθ

= e−∆x2/2σ2
0

∫ a/σ0

0
e−u

2/2 I0

(
∆x
σ0

u

)
u du

= f = 0.39.

Here, we use the fact that I0(z) = (1/2π)
∫ 2π

0 ez cos θdθ. For a given value of δ ≡ ∆x/σ0, we wish to
solve for d ≡ a/σ0 which satisfies∫ d

0
e−u

2/2 I0(δ · u)u du = f · eδ2/2.

The actual phase space dilution factor, d2 = (a/σ0)2 for a given δ is then to be compared with the
result 1 + δ2/2 for the increase in variance.

Below is a short “code” written in R1 which solves this equation for 0 < δ < 2 and generates the
plot shown in the accompanying figure. We see that the actual phase space area is underestimated
by the ratio of the variances for ∆x/σ0 above unity.

# Program to compute phase space area containing a
# fraction f of the beam particles resulting from an

1The R Project for Statistical Computing, http://www.r-project.org/ .
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# injection offset of amount dx

# dx is offset, in units of sigma0
# df is phase space area, containing the fraction
# "f" of the particles, in units of sigma0^2

dx <- array(0,100)
df <- array(0,100)

f <- 1-exp(-1/2) # should be ~39%

dd <- 0
# function to integrate
fcn <- function(u){exp(-(u)^2/2)*besselI(u*dd,0)*u }
# function for performing the integral
intgl <- function(d){ integrate(fcn,0,d)$value }
# find root of following, given an offset "dd"...
eqslv <- function(d){ intgl(d)-f*exp(dd^2/2) }

for(i in 1:100){
dd <- dd + 1/50
answr <- uniroot(eqslv, c(0, 10))$root ;
dx[i] <- dd
df[i] <- answr*answr # phase space area
}

plot(dx,df,ylim=c(0,max(df)),typ="l",xlab="dx/sigma",
ylab="dilution factor")

curve(1+x^2/2,add=TRUE, lty=2)
# last curve is the "variance" of the
# resulting phase space distribution
# for comparison
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Figure 1: Solid line = phase space area containing 39% of particles after dilution; dashed line =
increase in variance of the distribution after dilution.
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Problem 11 Here, one needs to make use of relationships among derivatives of Bessel functions,
namely

J ′0(u) = −J1(u), and uJ ′1(u) + J1(u) = uJ0(u); ′ ≡ d/du.

Though not asked to show in the problem, for completeness the expression for the coefficients cn,
Eq. 7.78, comes from the orthogonality relationship:∫ 1

0
J0(λnu)J0(λmu)udu = 0, m 6= n

=
1
2

[J1(λn)]2 ,m = n,

where J0(λn) = J0(λm) = 0.

Problem 12 We use Eq. 7.131 and the definition of Wa (just below Eq. 7.73) to determine the
value of τ at time t = 4 sec. Also, for each case, we need to know the initial value of σ/a. The
initial value of σ is determined from the emittance value given in the problem. So, we find...

(a),

τ =
(
R

Wa

)
t =

(
〈β〉
a

)2

(3.3× 10−7/sec)
P [µtorr]

γ

=
(

50
0.01

)2(6.6× 10−7

γ

)
=

16.5
γ

= 1.73

for a proton beam with kinetic energy of 8 GeV. The initial beam size is given by σ =
√
βεN/(6πγv/c),

which here is about 3.6 mm for our numbers. Thus, σ/a ≈ 0.4 and Figure 7.9(a) roughly applies.
We see that at τ ≈ 1.7, only about 10% or less of the particles have survived.

(b),
Replace γ = 9.5 with γ = 22 above, to find τ ≈ 0.75, and σ/a ≈ 0.24. So, Figure 7.8(b) might be
more appropriate, indicating that roughly half the particles would be lost in 4 seconds in this case.

Problem 13 If the initial particle distribution is uniform out to a radius a0 in phase space, where
the limiting aperture is defined by a, then the distribution function at time τ = 0 must be

f0(Z, 0) =
a2

a2
0

, Z ≤ a2
0/a

2

and zero from a2
0/a

2 < Z ≤ 1. To show the two expressions in this problem, one needs only to
determine the coefficients cn:

cn =
1

J1(λn)2

∫ 1

0
f0(Z)J0(λn

√
Z)dZ

=
a2

a2
0

1
J1(λn)2

∫ a2
0/a

2

0
J0(λn

√
Z)dZ
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= 2
a2

a2
0

1
J1(λn)2

∫ a0/a

0
J0(λnu)u du

= 2
a2

a2
0

1
J1(λn)2

1
λ2
n

[J1(λnu) · λnu]a0/a
0

= 2
a

a0

J1(λna0/a)
λnJ1(λn)2

which, when substituted into Eqs. 7.77 and 7.90, give the desired results.

Problem 14 Use the Booster parameters of the appendix. The first passage through the foil strips
the electrons from the negative hydrogen ions to inject the protons. The remaining passages ideally
should not take place, but represent the time for the orbit manipulation to take the circulating
beam away from the foil. The radiation length in carbon is 18.5 cm. At a kinetic energy of 200
MeV, pv = 365 MeV. In order to minimize emittance dilution the foil would be placed at a location
of small β. Seeing that the maximum of the amplitude function from the table in the appendix is
about 40 m, take 10 m for this estimate. The product γ(v/c)β〈θ2〉 ≈ 1/10 mm-mrad, for a single
passage. The emittance dilution discussions in the text suppose that much time elapses following
the initial event; such is not the case here. So for the several subsequent passages through the foil,
we should allow dilution of about 1 mm-mrad, still acceptable.

Problem 15 Combining Eqs. 1.23 and 7.112 gives

e2〈v2〉
E2

=
1

3πγf0H
εN
τ

where εN is the 95% version of the normalized emittance. After calculating H according to Eq.
7.106 and setting E = 1 TeV, the estimate for evrms is 0.58 MeV. Since the maximum amplitude
of the Tevatron RF system is just a few MeV, the emittance growth must be due to another
mechanism.

Problem 16 According to Eq. 7.153, optimum cooling will occur for g = 1/(M + U). From Eq.
7.151, M = 8.6. The time constant τ is then about 27 msec.

Problem 17 Since the transverse components of momentum are equal in the two frames, the
expressions for Tx in part (a) follow from px0 = px = γmv and the 39% emittance definition. The
temperature of part(b) is about 25 eV. For part (c), ∆ps = ps0/γ and the temperature is 103/3 eV.
In contrast, electrons from a cathode at 1000 K would have a “temperature” of about 0.1 eV.

Problem 18 Adaptation of the process leading to Eq. 7.112 gives the result

dεs
dt

=
1
2

[
1

(v/c)eV Eωrfτ

(
− η

cosφs

)]1/2

e2〈v2〉
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8 Chapter 8

Problem 1 With use of Eqs. 8.11 and 8.12, the answer for part (a) is 8.85 MeV per turn. Taking
6400 km as the radius of the earth, the result for part (b) is 8.6 TeV per turn.

Problem 2 Scaling down Eq. 8.12 by the 4th power of the proton-electron mass ratio gives 173
eV for the energy radiated per turn. Multiplication by the 70 mA current gives a radiated power
of 12 watts. An ideal Carnot engine operating between 4K and 300K would require 75 watts to
remove 1 watt, so the 20% efficient device in the problem would need 4.5 kW input power.

Problem 3 The damping times in terms of τ0 appear in Eqs. 8.21, 8.31, and 8.36. For the Main
Ring, D ≈ 0.03 and so can be neglected for this estimate. The characteristic time τ0 is 17 msec.

Problem 4 This problem involves somewhat more algebra than most of the others and actually
gets a bit into accelerator design. First relate the parameter K that appears in just about all of
the equations of motion in Chapter 3 to something that can be easily visualized. Within a bending
magnet that also provides the focusing, the ratio B′/B has the dimensions of an inverse length,
and let’s call that length x0. If you imagine that the magnet shown in the figure for Problem 11 of
Chapter 1 has its poles inclined so as to produce a field gradient, then x0 is the distance from the
magnet midpoint to the projected intersection of the pole profiles. In these terms, one can write

K =
1
ρx0

where ρ is a rather large length appropriate to the scale of the accelerator and, as noted above, x0

is a smaller quantity related to the magnet size, and therefore the beam aperture. Design desires
(at least following the invention of strong focusing) want the beam to be localized within a region
of a few centimeters and magnet designs to accede to that wish are quite reasonable with x0 in the
region of one-third to one-half meter. According to Eq. 8.36, horizontal betatron oscillations will
exhibit growth with time due to synchrotron radiation provided D > 1.

Since the radius of curvature, ρ is a constant in this case, we have

D =
1
ρ
〈D〉+

2
x0

[〈D〉f − 〈D〉d]

where the subscripts on the averages over the dispersion refer to the radially focusing and defocusing
magnets. Since the dispersion is designed to be much less than the radius of curvature, the first term
in the equation above will contribute little, so the interest is on the second term of the equation.
Let D0, D

′
0 represent the dispersion and its slope at entry to the focusing magnet. The solution for

Eq. 3.128 then takes the form(
D0

D′0

)
= (I −M)−1

(
e
f

)
=

I −M−1

4 sin2(µ/2)

(
e
f

)
where M is the 2-by-2 matrix for the system, µ is the phase advance through a cell, and e, f have
the significance shown in Eq. 3.129.

29



In order to carry out the averages, one needs the solution for D throughout the magnets. That
means solving Eq. 3.127 and don’t forget the term on the right hand side. That means, for example,
that the solutions through the horizontally focusing and defocusing magnets are, respectively, of
the form

Df = x0 +Af cos(
√
Kz) +Bf sin(

√
Kz)

Dd = −x0 +Ad cosh(
√
Kz) +Bd sinh(

√
Kz)

where the A,B coefficients are to be found in terms of D0, D
′
0 as determined above. The remainder

of the problem is just a matter of sorting out the trigonometric and hyperbolic functions. The
result is

D = 2
sinh(

√
KL) + sin(

√
KL)√

KL
≥ 4

The construction of the earliest electron synchrotrons was not carried out with these stability
considerations in mind. But when beam storage became the priority, the design process changed
immediately.

Problem 5 The ratio of Eq. 8.56 to Eq. 8.55 is, according to Eq. 8.54, γ3. For the un-normalized
emittance one factor of γ cancels on both sides of Eq. 8.45. But, after examination of Eq. 8.47, it
is the variance of the momentum spread, not the fractional momentum spread, that is proportional
to the square of the energy in contrast to the statement of the problem.

Problem 6 The discussion leading to Eq. 8.48 would produce a factor of (1 − v/c) ≈ 1/(2γ2)
to multiply the undulator period length. An additional term is needed to take into account the
wobbly trajectory in arriving at the standard undulator formula.

Problem 7 For particle separation large compared with the wavelength of interest and sufficiently
uncorrelated motion, scaling according to n works. Recently, particle densities have been high
enough that “coherent synchrotron radiation” (CSR) has become important; this radiation varies
as n2 like the I2 of antennas.

Problem 8 The fields at the edge of the cylindrical bunch of radius r and length L will produce
a transverse force on the oncoming particle of magnitude

F =
ne2

2πε0Lr
(1 + v2/c2)

which, when integrated over the time of passage, yields a change in transverse momentum

∆px =
2ne2

2πε0Lr

(
1
2
L

c

)
=

ne2

2πε0rc
=

2nr0mc
2

rc
.
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Thus, the deflection angle of the oncoming particle will be

∆θ =
∆px
p

=
2n
γ
·
(r0

r

)
.

The critical energy, given by Eq. 8.54, when compared to the particle’s total energy is then

wc
E

=
3
2
γ3 ~
E

∆θ
∆t

=
3
2
γ3~
E

(
2n
γ

r0

r

)(
2c
L

)
= 6γn

~c
mc2L

· r0

r

= 6(107)(109)
(

197× 10−15

(0.511)(10−6)

)
2.8× 10−15

10−6

= 6.5× 104.
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